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1. Objective and Program Background* 

In late 2007, the U.S. Army Research Laboratory (ARL) initiated a research thrust targeting 
robotics technologies for asymmetric warfare in urban terrain.  The vision for this tactical 
domain calls for small robots suited to maneuver indoors as well as outdoors, perhaps sharing 
space with troops, with sensors to perceive the immediate surroundings, and sufficient 
intelligence to enable (at least short periods of) unsupervised operation.  Such a robot must 
embody substantial autonomy, e.g., be able to “see” and “understand” its environment so that it 
can perform its function with minimum burden on the soldiers it supports.  It requires sensors 
capable of detecting the immediate surroundings with high fidelity and richness, and powerful 
onboard computing systems.  At the inception of the new thrust, such capabilities were 
unavailable in research robots currently in ARL’s robotics labs.  As a first step toward exploring 
this new mission space, scientists and engineers at the Vehicle Technology Directorate’s 
Unmanned Vehicle Technologies Division (UVTD) set out to create the capability. 

A test bed for developing autonomy technologies, at least early in the program, can be based on 
commercial sensing technologies and a mobility platform of limited performance.  The lab had in 
its inventory 8-year-old ATRV Jr. research robots once built by Real World Interface, Inc. 
(RWII).  At the time of acquisition, these robots were quite advanced and offered skid-steer 
wheeled mobility, global positioning system (GPS) and electronic compass for navigation, ladar 
(a portmanteau of laser radar and often used interchangeably with lidar) and sonar sensors for 
obstacle detection, and a software development environment based on linked server modules.  
These robots were at the core of in-house robotics research at ARL.  By 2007, the ATRVs were 
well worn.  RWII (renamed iRobot Corporation) had discontinued production and support, and 
the Pentium III processor and Red Hat 6.2 operating system at the core of the robotics had been 
superceded by several generations.   

Research supporting ARL’s new robotics thrust calls for research robots similar in scale to the 
old ATRVs and with power and payload to support quantities of sensors and computing.  New 
research robots have become available from several vendors, but, in general, the function of 
these products is not substantially different from that of the old ATRVs.  The decision was made 
to renovate the old robots rather than invest in new research robots.  This report describes the 
upgrade of the ATRV robot for its new role. 

 

 

                                                 
*The products described in this report are believed to be suitable for the intended use, but their use in this endeavor does not 

constitute an endorsement by the government.  Other products may perform as well or better, or be less expensive. 
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2. System Description 

The stock ATRV robot is a 25-in-long  24.5-in-wide  21-in-high 110-lb vehicle.  Two deep-
draw, gel-cell, lead-acid batteries power a pair of servo motors that drive its four 12-in tires in 
skid-steer fashion by means of toothed belts.  A sturdy rectangular sheet-metal chassis houses the 
internals and supports the mounting rails front and rear and on the deck.   

Of the rest of the original major components, only the pan-tilt unit remains.  The rest have been 
replaced by functional equivalents and supplemented with functional extrapolations.  Figure 1 
depicts the components of the upgrade at a block diagram level.  Details of the upgrade follow.  

 

 

Figure 1.  Major components of the upgraded ATRV.  Gray indicates the component is off-board, linked 
by radio. 
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3. Upgrade 

3.1 Hardware 

3.1.1  Computational Hardware 

Increasing the computational capacity was a requirement for the ATRV upgrades.  In order to 
accommodate the planned sensor-processing research, the computers needed to represent the 
latest technology available off the shelf.  In addition, they needed to be small and power-efficient 
but possess sufficient processing capability to minimize the processing bottleneck.  The current 
trend in the hardware and software community is to leverage horizontal scale (more processing 
elements on a die), more so than clock speed.  Thus the new computational hardware design 
takes full advantage of the space and processors available. 

3.1.1.1  Central Processing Units (CPUs).  A Mini-ITX (a motherboard format popularized by 
Via Technologies, Inc. [1]) was located that supported dual- and quad-core Intel processors.  The 
only one available at the time was the Commell Core 2 Quad* with dual gigabit ethernet ports, 
six USB 2.0 ports, an 8-bit digital general purpose input/output† port, and Serial Advanced 
Technology Attachment.‡  The ATRV Jr. has enough room for two reasonably sized mini-ITX 
cases, so the computers are relatively modular and easily replaceable.  Each computer is 
equipped with 4 GB of RAM (although the computer system bus allows access to only 3 GB).  A 
gigabit ethernet switch connects the two machines together and essentially yields a miniature 
computing cluster with eight processor cores. 

3.1.1.2  Storage.  Storage is provided by a single 16-GB solid-state drive for each CPU.  
Solid-state drives are used to increase system performance (relative to standard rotating platter 
4200 RPM laptop drives) and increase system reliability with respect to vibration issues.  While 
the storage size is small compared to today’s large drives, it is more than enough to hold an 
hour’s worth of raw data from the primary sensors and can be easily expanded with larger sizes 
if the need arises. 

3.1.1.3  Network.  As mentioned previously, the computers interface with each other through the 
network switch and with external machines (i.e., control stations, logging/debugging systems, 
development systems) through either a 100-Mbs wired or 54-Mbs wireless interface provided by 
an Alfa Network’s AWAP608 wireless access point (2). 

                                                 
*Model No. LV-676. 
†Usually an 8-bit digital interface. 
‡A computer bus for attaching mass storage devices to a computer. 
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3.1.1.4  Sensor Interfaces.  The ATRV Jr. has a variety of onboard sensors that utilize several 
connection interfaces on the CPU:  serial, USB 2.0, and IEEE 1394.*  Many of the serial devices 
are connected through RS-232†-to-USB adapters, while others (like the motor controller) are 
connected directly to the motherboard.  Several perception sensors on the ATRV Jr. use USB 
and IEEE 1394 directly.  

3.1.2  Sensors for Reaction and World Modeling 

The purpose of sensors on a mobile robot is to create an analog of the nearby environment in 
data structures used by the computer programs that control the robot.  These data structures are 
collectively termed the “world model.”  While some robots simply react to sensor inputs to alter 
some behavior (“obstacle ahead, turn left”), the objective of this project is to enable the robot to 
sense the geometry of its environs, store the sensed elements in data structures based on a self-
constructed local map, and plan its behaviors based on the map.  The map will have different 
layers, populated with geometric elements (extracted and abstracted from its geometry sensors), 
spectral elements (extracted from its cameras), elements fused from the sensor-derived elements, 
and iconic elements (extrapolated from the sensor-derived elements and filtered based on a 
mission-based context).   

The universe of sensors appropriate for small robots is not a large one.  Sensors considered for 
the robot are described further in this section, and those selected for the upgrade are pictured in 
figure 2. 

3.1.2.1  Video Camera.  Video cameras are widely available and relatively inexpensive.  Imagery 
is dense (high pixel count) but only spectral in nature.  The information content of the image is 
rich but lacks the immediate geometric significance needed for safe mobility.  Significant 
processing is necessary to convert a stream of spectral images to the geometric world model 
needed.  However, given a geometry by some other sensor, the richness of the video imagery can 
be overlaid.  Video imagery is also the most easily interpreted sensor mode for a human.  
Augmented by feature-tracking software, the video sensor can provide a direction reference and 
can support algorithms such as direction-only simultaneous localization and mapping. 

Given the widespread availability of video cameras, there are a number of parameters that can be 
used as a selection criterion.  Field of view, a function of lens selection, is probably the most 
important (the wider the better).  In general, the image resolution (number of pixels) is not 
important, as even the least capable cameras have sufficient resolution for the application (except 
for stereo vision, which will be treated separately).  A key parameter is the ease of integration 
with a computer.  While analog cameras today dominate the market, cameras with a built-in 
digital interface are more suitable for the application.  This is partly due to ease of interfacing, 
but the primary reason is that most digital video cameras have progressive scan technology, 

                                                 
*Also known as Firewire (another serial bus standard for computer interfaces). 
†A standard serial interface to a computer, once common but recently supplanted by USB. 
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Figure 2.  Principal sensor of the ATRV upgrade. 

which is important when the camera is mounted on a moving platform.  Firewire (IEEE 1394) 
cameras are the most common.  For streaming applications, Universal Serial Bus (USB) has little 
to offer over Firewire, which was designed with video applications in mind.  Both offer 400-Mbs 
rates, adequate for video graphics array* (VGA)-quality resolution or a little more.  The newer 
IEEE 1394b, at 800 Mbs, is not yet widely available but will become so. 

A representative video camera is the Unibrain Fire-i, priced at around $120 for VGA-resolution 
imagery with a plastic case and glass lens (3).  A 4.3-mm focal length f 2.0 lens was selected, 
specified to deliver VGA-resolution imagery at 30 Hz, covering a horizontal field of view of 
42.25°.  A number of vendors offer competing products; this selection was based on low price 
for adequate performance. 

3.1.2.2  Near-Range Geometry Sensing.  For a number of years the only sensor capable of 
detecting the geometry of the environment, in a package of suitable size and cost for use on a 
small robot, was a sonar sensor such as the Polaroid product of the early 1980s.  Modern sonar 
sensors for robotics differentiate between empty and occupied volumes in a cone subtending as 
little as 15°, so the spatial resolution perpendicular to the cone is limited, and the “occupied” 

                                                 
*A standard for computer display hardware. 
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region of the cone can be a tiny fraction of the cross section of the cone at the detected range (4).  
Sonar units work well enough for simple reactive obstacle detection, and several will be 
incorporated in the finished upgrade.  However, a denser scan is necessary to be useful as a 
geometry sensor.   

3.1.2.2.1  Line Scanner.  A line scanner is one such sensor and is widely used in mobile robotics.  
A line scanner is a laser range finder, which is swept through an arc by a spinning mirror.  The 
sensor detects the return from the laser and calculates distance from time of flight at discrete 
angular increments around the disk so described.  A line scanner oriented so the plane of 
detected points is horizontal (e.g., the axis about which the mirror spins is vertical and the angle 
between the mirror and its axis is 45°) is useful in real-world terrain where objects of interest 
(walls, etc.) are also vertical, such as an indoor environment.  This sort of sensor is insufficient 
for general obstacle detection and terrain mapping but can be used to generate a useful first 
approximation, as vertical terrain features tend to be the most salient.   

A line-scanning unit built by the German company SICK AG was used on many of the mobile 
robots competing in the recent Defense Advanced Research Projects Agency Grand Challenges 
for autonomous unmanned ground vehicles.  The SICK unit, however, is too large and heavy for 
this application.  Instead, a device similar to the principal geometry sensor was used. 

A smaller line-scanning device, the URG-04LX (5), is available from Hokuyo.  This sensor 
works very much like the SICK scanner but is small (2  2  3 in) and lightweight (165 g).  It 
sweeps an arc of 240° at a rate of 10 Hz, returning range measurements at intervals of 0.36°.  
This corresponds to approximately one data point per inch at the maximum range of 4 m and 683 
data points every 100 ms to process to maintain real time.  The URG sensor is mounted to the 
frame of the robot so that the plane of the measurements is horizontal and at the height of the 
robot.  This is consistent with using the sensor to avoid right prismatic (cuboid) obstacles, and it 
also enables the mapping of indoor terrain, which is predominantly bounded by vertical planes. 

A second line scanner is mounted at the front of the robot, directed at the ground ~1 m ahead of 
the robot.  This scanner senses the terrain the robot is just about to drive onto.  The horizontal 
line scanner receives no sensed data from the ground, so the second scanner is depended upon to 
assure that there is indeed ground to drive upon and that the terrain is smooth enough for the 
robot to traverse.  Ideally, this sensor would look out 3 m ahead so there would be time to stop if, 
for example, the sensor detected the top step of a flight of stairs.  The look-ahead distance may 
be changed as researchers gain experience with the system. 

3.1.2.2.2  Imaging Ladar.  More detail concerning the geometry of the environs is available from 
an imaging ladar sensor.  Such a sensor acquires range data as a set of range vectors centered at a 
focal point and organized as an image, e.g., rows and columns of data points.  Surveying ladars, 
such as those available from Riegl USA, Inc., provide high-resolution three-dimensional data at 
ranges over 100 m, but the range measurements are sequential and too slow for mobile 
applications.  Ladars built specifically for mobility applications, such as the product built by 
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General Dynamics Robotic Systems for the Army’s Autonomous Navigation System, are 
substantially faster, but today’s technology is too large and heavy for use on this small robot.   

A recent technology known as “flash ladar” is based on camera technology, enabling fast data 
acquisition as well as light weight and compact size.  Such a device illuminates the environment 
with light modulated at a known frequency and determines time of flight from the phase shift of 
the reflected energy incident on each pixel imager.  Devices using this technology are available 
from PMD Technologies GmbH, Mesa Imaging AG, and possibly others. 

The device selected for the ATRV sensor upgrade is the Mesa Imaging SwissRanger SR-3000 
(6).  This sensor collects frames of range data 176  144 pixels at a rate of 30 Hz over a field of 
view of 47.5°  39.6° (0.27° per pixel).  Maximum range is advertised as 7.5 m, limited by the 
nonambiguity constraints of the measurement technique, but several papers in the literature 
indicate a shorter useful range.  Range resolution is specified by the data sheet as 1% of range.  
A cursory evaluation of the sensor revealed a sensitivity to bright lights, resulting in washed-out 
regions of the image, which must be further investigated.   

The SwissRanger is mounted on an existing pan-tilt unit on the deck of the ATRV.  The pan will 
be used to compensate for the narrow fields of view of the various sensors mounted on the unit.  
The tilt axis will likely be set at a fixed look-down angle, which provides a “good” amount of 
information about the ground immediately ahead of the robot while not sacrificing too much 
information about overhanging objects. 

3.1.2.2.3  Stereo Vision.  There will be times when it is necessary to sense geometry at ranges 
greater than that provided by the active sensors.  Computer-based stereo vision can provide range 
images at distances of tens of meters, but it has been seldom utilized outside the laboratory (and 
in planetary exploration).  In part, this is because the sensors (conventional cameras) are 
inexpensive, but the computing to process the camera images into a range image was “do it 
yourself”—the phenomenon was well understood and algorithms were widely available, but 
there was no integrated stereo “system” delivering range images. 

The recent availability of “Stereo on a Chip,” from Videre Design LLC, has changed the 
maximum range available from an active sensor (7).  A field programmable gated array 
packaged with the complementary metal oxide semiconductor video imagers computes disparity 
(a function of range) at each pixel of the VGA-resolution image at 30 Hz, reducing the workload 
of the host processor substantially.  The 4.5-mm lens images a field of view of 59° horizontal  
41° vertical.  As configured for UVTD’s application, the range resolution at 8 m is computed by 
Videre Design’s online calculator to be roughly 2.5 in; ranges closer than 0.5 m are unavailable.  
The stereo sensor is expected to deliver a dense sampling of a (possibly imprecise) range 
function, allowing ranges to be estimated beyond the ability of the ladar sensors.  Reflectance 
values from the stereo system are also available on a frame-by-frame basis, enabling data 
integration and/or fusion.
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The stereo sensor will be mounted on the pan-tilt unit near the SwissRanger so the region 
sampled by both sensors overlaps.  The overlap among the fields of view of the various sensors, 
shown in figures 3 and 4, will be exploited in any way possible. 

 

 

Figure 3.  Sensor fields of view are shown here in side view, according to the following key:  stereo in 
blue, color camera in green, flash ladar in red, horizontal line scanner in magenta. 

3.1.2.3  Inertial Reference.  All the sensors described report their sensed data in the coordinate 
frame of the sensor itself.  In order to integrate the information over time, it is necessary to 
transform the data to a common coordinate system, preferably a world-fixed coordinate system.  
The conventional way to do this is to sense the robot location from a sensor such as GPS and the 
robot orientation from a compass, and augment these sensors with time derivatives of each from 
an inertial reference sensor suite and odometry.  In the case of this ATRV, the ideal operational 
area is where GPS is unavailable and where compass readings may be compromised (and 
possibly in unmapped regions).  In this case, high-quality time derivatives of position and 
orientation are wanted because of the integrations required.  

A 3DM-GX1 inertial reference sensor (IRS) from MicroStrain, Inc., (8) provides orientation and 
acceleration for the upgraded robot.  Raw data from embedded accelerometer, gyros, and 
magnetometers are fused by the sensor itself.  Alternative IRSs are available but were not 
considered since sensors from the MicroStrain product line are used on other division assets, and 
performance was deemed acceptable. 

3.1.3  Power 

Power for the robot as a whole was left unchanged from the original ATRV, that is, dual  
12-V deep-draw batteries with off-board recharging.  It remains to be seen whether the duration 
available will be sufficient for research missions.  
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Figure 4.  Sensor fields of view are shown here in top view, according to the following key:  stereo in blue, 
color camera in green, flash ladar in red, horizontal line scanner in magenta.  Black centerline 
shows crosshatches at 2-m intervals out to 10 m. 

Power for peripherals was shifted from the computer power supply of the original ATRV power 
architecture to a custom power distribution board supplying regulated 5 and 12 V through bussed 
terminal strips. 

The CPU of the original ATRV computer was rated at ~30 W, while the CPU selected for the 
upgrade was rated at 125 W, so the computer power supply was upgraded as well.  The onboard 
power supply, the M2-ATX 160W (9), was selected based on its tolerance of a wide range of 
input voltages (6–24 V) and its form factor, which corresponds to the dimensions of the case 
selected.  The maximum input operating voltage, outlined in the specifications, is 24 V, which is 
marginal for a battery system consisting of two 12-V batteries.  A more recent release, the M2-
ATX-HV, claims an even higher maximum input voltage and would be a more conservative 
selection.  
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3.1.4  Motor Control Board 

The motor control board was replaced as well, though the two wheelchair motors and gearboxes 
driving the ATRV’s four wheels were retained.  The AX3500 product from Roboteq (10) was 
selected for the following reasons: 

1. It is designed to run with 24-V rechargeable batteries. 

2. It supplies maximum motor current of 40 A for each of two brush-type electric motors, 
well beyond the 11-A rating of the wheelchair motors.   

3. Input to the motor control board through RS-232 is available.  A translational velocity 
/rotational velocity command is native. 

4. The board supports optical encoders, also part of the original ATRV motor suite.  The 
encoders enable closed-loop velocity control, an essential element for control of a skid-
steer vehicle where soil resistance is uncertain.  In addition, the encoder counts can be 
monitored through the serial link, providing an odometry function. 

5. It has two distinct safety shutoff modes, including one which can be easily asserted from a 
remote radio control (RC) controller. 

While each of the elements listed are essential to the application, a number of other features 
bring added value to the control board, notably the ability to control the robot from an RC remote 
control.  This capability is very useful in logistic operations, such as maneuvering the robot into 
its parking place at the end of the work day.  

3.1.5  Safety Circuitry 

The original ATRV was equipped with four e-stop mushroom buttons on the robot.  To stop the 
robot in case of a software failure, it was necessary to approach the robot and push one of the 
buttons.  One of the goals of the upgrade was to increase the safety of the robot by enabling a 
software-independent kill capability from a distance, so the robot can be brought to a halt 
without jeopardizing the operator.   

Using a safety mode suggested by the manufacturer of the motor control board, there are now 
three means of stopping a runaway robot.  The first is by means of the e-stop buttons on the 
robot.  These cause an e-stop input on the motor control board to be activated.  The second is a 
red e-stop button on the remote control.  Pressing this button actuates the same input through one 
channel of the RC radio.  Both require a reset from a key-switch on the robot body before motor 
control is restored. 

The third mode stops the robot by a new mechanism.  The motor controller can accept 
commands from either the serial link connected to the onboard computer or from the RC receiver 
linked by a dedicated radio channel to the remote control.  The remote control determines which 
signals reach the control board input by means of an electromechanical relay.  
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The default control is from the remote control, and it must be ceded to the computer by a manual 
switch on the remote control.  If the program running on the computer is judged by the operator 
to be in dangerous error, the operator can throw the switch on the remote control, which seizes 
control from the computer and returns it to the remote control in the hands of the operator.  This 
safety paradigm is similar to that used on UVTD unmanned air assets.  Figure 5 depicts the 
operator’s remote operation and safety control.  Figures 6 and 7 illustrate status monitors, 
allowing the operator to confirm elements of the robot control state. 

 

 

Figure 5.  The remote control provides the operator the ability to 
stop the robot from a safe distance in case of emergency 
and operate it manually with the joystick. 

 
 

 

Figure 6.  Display panel at ATRV rear. 
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Figure 7.  The display panel shows the status of a number of internal states. 

3.2 Robot Software 

Since the original software provided by RWII for the ATRV Jr. was proprietary, replacing the 
computers meant replacing the operating system and supporting software (including the device 
drivers).  Thus the decision was made to utilize the Open Source robotics package Player (from 
the Player/Stage project [11]), which provides a convenient hardware abstraction layer and a 
multitude of popular robotics device drivers.  Player is also used by numerous academic 
institutions with robotics programs including the University of Pennsylvania, Georgia Institute of 
Technology, and the University of Southern California (12). 

3.2.1  Organization 

The software on the robot computers is divided into three layers: base, core, and brain (see 
figure 8). 

 

 

Figure 8.  High-level software organization.  The smaller items in each level 
indicate the types of components in each layer. 
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The base layer contains relatively static library code and the core operating system facilities that 
are common across all machines, including a properly configured kernel for the CPU 
architecture.  Debian (13) GNU/Linux is the operating system of choice, primarily to gain the 
benefit of its package management system Advanced Packaging Tool (APT) as well as the ease 
of configuring a custom system using the very useful debootstrap tool.  

The core layer is an abstraction layer providing higher-level functionality to the layer above it.  It 
contains the Player system and any shared libraries required for robotic development, including 
the agent architecture under development (see section 3.4).  The ATRV Jr. currently under 
development has a custom driver plug-in for Player that was developed for the Roboteq 
controller, as well as the libraries required for the SR3000 Flash Ladar.  In general, more volatile 
libraries (rapidly changing open source and internal packages) will reside in this layer. 

The brain layer is the effective application layer where agents and high-level behaviors can be 
implemented.  Thus it will contain the custom scripts, executables, and data that compose the 
actual behavior of the robot.  Currently, the brain layer is not implemented in the upgrade; 
however, work is underway to address that problem (section 3.4). 

3.2.2  Operating System 

The base operating system was constructed to be relatively small and boot fast.  Debian 
GNU/Linux, however, provides an installation script that downloads a minimal Debian operating 
system without the Linux kernel.  The minimal system includes only a small subset of a typical 
GNU/Linux distribution, so scripts were created to add in additional software readily available 
from the Debian software repository. 

The omission of the Linux kernel from the minimal system is deliberate; more than likely, 
someone building a custom distribution will want to custom configure a kernel for specific 
hardware, as is the case for this project.  Thus the scripts choose among several custom kernel 
configurations based on a given keyword, build the kernel, add it to the system base directory, 
and build a disk image that can be copied directly to the robot’s hard disk.  

The current custom build of Debian is around 300 MB, which includes all the required kernel 
modules, base libraries, and extra libraries needed to comfortably support the Player system and 
most anything else needed (this includes the Debian-provided version of the OpenCV computer 
vision library).  That is considerably larger than the initial goal and is mostly the result of some 
extraneous dependencies on GTK+ libraries within Player, which can be removed when time 
permits.  However, the system does boot in just under 10 s, which is quite good.  Boot time can 
be improved by optimizing the operating system. 
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3.2.3  Device Abstraction 

As mentioned previously, the Player system is a “robot device interface and server” and acts as a 
device abstraction layer to elements of the robotic architecture residing in the core and brain 
layers.  Since Player is now one of the most popular open source robotics libraries, it already has 
support for many of the devices used, including IEEE 1394 cameras, USB cameras, the SR3000 
flash ladar, and the Microstrain inertial measurement unit (IMU).  Adding a device is 
straightforward—pick or develop a Player interface that defines an abstract representation of a 
device (e.g., the laser interface defines how to talk to a laser-ranging sensor without worrying 
about the particulars of device initialization, configuration, or communications protocol).  Most 
drivers then provide a specific implementation of an existing interface and a configuration file 
format for specifying hardware-specific parameters in a runtime-configurable format.  

The ATRV Jr. currently has one custom device driver implementation for the Roboteq motor 
controller, described in the next section. 

3.2.3.1  Roboteq Device Driver.  The Roboteq device driver written by UVTD implements the 
Player position2d interface, which can be used to control planar mobile robots.  The interface 
provides the facility to issue velocity commands (x_dot, y_dot, theta_dot), position commands 
(x,y,theta), speed/heading commands (v,theta), and car commands (v,theta), which the driver 
may ignore or implement according to the platform configuration.  The current version of the 
Roboteq driver only understands the velocity commands and assumes the presence of encoders 
and the use of mixed mode, closed-loop serial operation to the actual motor controller device.  

3.2.3.2  Player Configuration.  Player is very flexible and does not assume or impose much on a 
system design.  The core of Player is the device abstraction, but Player also provides a 
Transmission Control Protocol (TCP)-based server that allows multiple remote connections and 
controls for each device configured for that server.  In most cases, there is one Player server per 
robot providing a connection to all the devices configured for that robot.  However, the server is 
not implemented in a concurrent manner; therefore, the configuration in use on the ATRV Jr. 
takes advantage of multiple CPUs by providing one Player “server” per robotic device, e.g., a 
stereo vision server, an IMU server, etc.  This provides the same abstraction as one server for all 
but allows the servers to run concurrently (and therefore block concurrently, if need be). 

3.3 Development Environment 

Building an essentially new robotic system from the ground up* requires that configuration 
management (CM) and software engineering issues be addressed.  Section 3.3.1 highlights the 
motivation and derived requirements that guide the design of the environment described in 
section 3.3.2. 

 

                                                 
*At least from the software point of view. 
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3.3.1  Motivation and Requirements 

Creating a formal CM environment is motivated by a desire to do the following: 

• Keep the robot systems clean and free from version incompatibilities. 

• Allow new engineers/developers to become productive with the available tools. 

• Facilitate access to the code. 

• Share the maintenance and development of the system across the set of contributors. 

• Support more than one robot system. 

• Encourage and/or enforce compliance with software engineering practices in order to 
improve code quality.  

These goals were used to define the following high-level requirements: 

1. The robotic system software must be versioned from a central server.  

2. The development model will be a host-target configuration.  

3. The development systems must have a common set of libraries and tools, and therefore be 
imaged from a central server.  

4. The development systems must have access to the robot system.  

5. The central server and development systems must reside on the same network.  

6. The central server must provide reliable data storage.  

7. At least two laptops must be available for operating, debugging, and logging data from the 
robots.  

8. It must be easy to update the robots with newly developed software.  

The system design that implements these requirements is detailed in section 3.3.2.  However, two 
particularly important ramifications of this CM warrant further description in the following 
sections. 

3.3.1.1  Providing a Clean Slate.  Since the ATRV Jr. is a shared resource that will be utilized by 
multiple researchers often investigating somewhat orthogonal topics, providing a clean operating 
environment is essential.  Extraneous software should be kept to a minimum, with an eye toward 
the essentials that make the robot run.  Not only does this leave more storage capacity, but it 
speeds up the system and reduces the chance that software might conflict with mission-critical 
functions.  While installing a programmer’s text editor and all the development libraries seems 
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harmless, it also seems completely extraneous for a robot running a real mission.*  In addition, 
the host-target model helps to ensure that the robot does not get out of sync with the repository.  
Facilities will be provided to build the relevant portions of the system (i.e., base, core, brain) and 
then transfer those portions to the robot (which enables a “set it and forget it” behavior).  

3.3.1.2  Enabling Software Reuse.  The ATRV Jr. upgrade is seen as an opportunity to begin the 
construction of a development environment and software platform conducive to creating state-of-
the-art robotic vehicles based on the x86 architecture.  Part of accomplishing this goal is 
providing for effective software reuse.  Thus this approach relies on system connectivity, 
redundant data storage and automated backups, capable version control and a defined usage 
policy, and modular software design.  Systems need to be connected in order to facilitate source 
code-level sharing and allow the systems to enforce a check-in policy.  Reliable data storage is a 
requirement to prevent loss of valuable work and knowledge.  Version control is a must in order 
to provide a well-known repository of code and a means to keep it organized and safely 
shareable.  Finally, modular software design (see section 3.2.1) is the real key to reuse; while it is 
clear that a given robot will have some customized pieces of software that are likely unusable in 
a different robot, it is equally clear that many algorithms, frameworks, and sensor device drivers 
can be used across many robots.  This is ultimately the purpose in open source software packages 
like the Player/Stage project and Yet Another Robot Platform (YARP) (14).  A very conscious 
decision was made in this project to consider the packages available and reuse others’ hard work 
as much as possible (i.e., the use of Player/Stage and the Unified System for Automation and 
Robot Simulation [USARSim] [15] as well as the ideas, algorithms, and/or code from packages 
like YARP and the Mobility Open Architecture Simulation and Tools [MOAST] [16] 
framework).  This has, without a doubt, accelerated the ATRV Jr.’s software development 
significantly.  

3.3.2  Environment Design 

Based on the requirements stated previously, the environment consists of the following elements:  
an online Ubuntu GNU/Linux workstation, an offline network, a development server, multiple 
development laptops, robots, a version control system (VCS), a remote synchronization server, 
and a host of scripts implementing build and update functionality.  A high-level diagram of the 
topology is shown in figure 9.  

3.3.2.1  Online Ubuntu Workstation.  Since Ubuntu (17) GNU/Linux is based on Debian 
GNU/Linux, it inherits the excellent APT and an extensive repository of software.†  The online 
Ubuntu workstation provides access to this resource, and custom scripts generate local repository 
mirrors that can be transferred to the offline development server.

                                                 
*Recently, there has been some discussion on relaxing these restrictions through careful build-time parameters; e.g., a build 

switch could indicate whether the robot is being used for development or “production” use. 
†Often, software is not available anywhere else without a manual installation procedure: find dependencies, download, 

compile, and install everything in the proper order (a time-consuming process). 
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Figure 9.  An Ubuntu workstation is online and provides updates to the 
development server through a manual process, which, in turn, 
provides automatic updates for the offline network.   

3.3.2.2  Offline Network.  An offline network is necessary since the custom robot systems (based 
on Debian GNU/Linux) and development systems (based on Ubuntu GNU/Linux) cannot 
currently gain access to the Internet.*  This network connects the development server and 
workstations together to provide version control and system software updates, and also allows 
the workstations to connect to the robots. 

3.3.2.3  Development Server.  The development server is an Ubuntu GNU/Linux-based system 
that provides the master VCS repository (on a RAID-1† setup providing reliable data storage) as 
well as all the required libraries and tools for software development.  The development server 
also provides a file synchronization utility (rdist‡) service for the development laptops and 
considerable computational power for robot simulations.  

3.3.2.4  Development Laptops.  The development laptops are intended to be shared resources that 
serve as both workstations for software development and control stations for system testing.  
They are configured to enforce a VCS check-in schedule in order to ensure little or no data loss 
should some hardware fail.  The development server automatically provides remote software 
updates to each laptop; thus all laptops have synchronized file systems.  At least two of these 
laptops can be used specifically as control stations during testing or demonstration. 

                                                 
*For reasons beyond the scope of this report.  
†Raid = redundant array of independent disks. 
‡Remote file distribution: a method of distributing software updates from a central location to multiple remote sites.  The 

behavior is implemented with a client (rdist) and a server (rdistd) (18).  
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3.3.2.5  Version Control System.  An important part of a basic software development 
environment is always the VCS.  It stores the history of the project and all development artifacts 
(i.e., it doesn’t need to hold only source code).  To offer the greatest flexibility, a distributed 
VCS* is utilized.  This allows easier branching and merging of individual lines of development 
(i.e., facilitates experimentation as well as bug fixes for stable releases) and makes it possible to 
develop outside the network.  Since any “clone” of the repository is actually a full repository in 
itself,† one can transfer the repository to a completely different network or simply take a 
repository offline for development away from the server.  When this “disconnected” repository 
needs to synchronize with the “connected” repositories, the differences are automatically merged 
(whether through a network connection or the exchange of patch sets through some medium like 
e-mail).  This configuration allows for the most flexibility, especially for contributors that may 
not have access to the network. 

3.3.2.6  Remote Synchronization System.  As mentioned in section 3.3.2.3, the development 
server hosts a rdist daemon that ensures the file systems across the server and laptops are 
identical.  Note that home directories are not synchronized, while all the important development 
tools and libraries are kept up to date.  This does require some manual updates to be made to the 
development server itself (see section 3.3.2.2) but only when changes are required (security 
update or new version of a library, etc.). 

3.3.2.7  Build Scripts.  A library of build scripts is distributed as part of the robot software 
distribution’s development repository.  These build scripts automate and therefore simplify a 
large portion of the effort needed to construct aspects of the robot software package.  For 
example, there are scripts to download and build the base component as well as scripts to 
automatically configure the Player library for the ATRV Jr.’s specific device configuration.  
These scripts are expected to be developed over time to include the most configurable aspects of 
the system in such a way as to greatly facilitate the construction of a software package for an 
entirely new piece of robot hardware. 

3.3.2.8  On the Host-Target Development Model.  The development environment for the new 
ATRV Jr. is based on a host-target environment, meaning a large portion of development 
happens on a developer’s workstation or a stand-in platform, and the resulting product is 
transferred to the robot for testing.  While this is a departure from the previous ATRV 
configuration that allowed self-hosted development, it is not as bad as it seems.  By using the 
Player framework for hardware device abstraction, researchers get to make use of supported 
simulation environments, including (but not necessarily limited to) Stage, Gazebo, and 
USARSim.  A debugger is present in the default base distribution and the host-target separation

                                                 
*Currently, Mercurial is the distributed VCS of choice.  However, Git is also being investigated for its power and flexibility. 
†Contrast this with centralized, nondistributed VCSs like CVS and Subversion (one must have access to the server in order to 

check in code). 
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can be relaxed for situations where it makes more sense to develop directly on the robot 
(however, review section 3.3.1.1 for reasons to avoid that scenario). 

3.4 Toward a Robotic Agent Architecture 

While the software support on the ATRV Jr. can, at present, be used for application development 
and provides a high-level division between modules responsible for different tasks, it does not 
address how individual components work together to achieve the total behavior for the system.  
The previous ATRV Jr. software architecture is similar to the current one in that it is based on a 
collection of services using the Common Object Request Broker Architecture.  While services 
can go a long way in providing reusable device abstractions and behaviors, the architecture 
concepts discussed in the next sections extend that paradigm to a higher level—that of 
cooperating agents. 

3.4.1  Issues 

In the context of developing a framework to control the ATRV Jr. platform, the term architecture 
refers to how the overall behavior, intelligence, and control of the ATRV will be arranged in 
software.  The term “agent” refers to a self-contained entity that implements a perceive -> think  
-> act loop and can communicate with other agents.  The idea of the agent architecture is to 
implement the “brain” as a collection of loosely coupled agents acting individually to perform 
specific tasks and concurrently acting together to enable the emergent behavior, intelligence, and 
control of the robot.  Since an agent can be thought of as a superset of a service, an agent-based 
architecture can parallelize and distribute across multiple CPUs or systems as well as service 
architectures can.  An agent-based architecture also distributes better than a monolithic system 
(which cannot run across multiple systems at all). 

The concept of agents is not particularly new or unique.  Many robot software implementations 
provide the capability to construct stand-alone components that can communicate with other 
components, sometimes within a prescribed methodology, sometimes without any guidelines for 
application structure at all, and almost always tied to a specific implementation language.  The 
following questions are addressed with a new architecture design based on agents: 

• What infrastructure and performance capabilities are required to effectively support 
advanced perception research?   

• What infrastructure is required to support autonomous behavior research?   

• Is there a way to integrate concepts from the cognitive artificial intelligence perspective 
into a cohesive software framework that can also include more primitive capabilities?   

• Can the architecture be efficient enough to run aboard relatively small robots but flexible 
enough to support more advanced software designs (i.e., distribution, concurrency, 
clustering)?   
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• Is there a way to integrate existing software as a functioning component within the 
architecture?   

3.4.2  Initial Design Topics 

The architecture is broken down at the highest level into two components:  the infrastructure and 
the interfaces.  There really is a third component, the actual implementation of the agents, but it 
is orthogonal to the architecture design.  Note that hardware abstraction is handled by the Player 
software and is therefore omitted in the following discussion.  

3.4.2.1  Infrastructure.  The infrastructure component includes everything that enables the agents 
to cooperate and perform their functions but includes and prescribes nothing related to actual 
robot behavior.  In other words, it acts as a substrate that supports the agents both during 
development and runtime. 

Initial requirements for the infrastructure include: 

• be as lightweight as possible 

• enable multilanguage agent implementations 

• support appropriate peer-to-peer and service-oriented constructs 

º discovery and lookup 

º group communication/multicast 

• utilize message-passing abstractions for all inter-agent communication  

• allow prioritized messages to disambiguate conflicting requests  

• provide efficient implementation constructs where possible  

• provide a simple method for launching agents 

3.4.2.2  Interfaces.  The interfaces describe the kinds of agents or services one uses to build a 
robotic intelligence system (but not necessarily how to build the agents).  By specifying 
interfaces, one can effectively describe the requirements of an agent without specifying 
implementation details and decoupling agents from other agent implementations, providing for a 
more fluid system design that allows for parallelism, distribution, multilanguage support, and 
pluggable algorithms.  For example, table 1 lists some agents and services researchers would like 
to implement on the ATRV Jr. 
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Table 1.  A representative example of agents and services for the 
ATRV Jr., roughly organized by complexity. 

Low Middle High 
Safety Identification Planning 

Mobility Tracking Task 
Mapping Telemetry/reporting Health 

Navigation Manipulation Cooperation 
Geometry Memory Metareasoning 
Obstacle Context Human interaction 

 

3.4.3  Existing Work 

The following sections provide brief surveys of a number of existing robot software systems that 
may serve as foundations or guidelines for future work. 

3.4.3.1  Player.  Player provides a multiclient/server paradigm over TCP for interacting with 
robot hardware and does not impose or suggest any other structure or organization.  The common 
use case involves a single server representing the devices on a robot and one or more client 
programs implementing behavior.  Player is written in C/C++ and provides C, C++, and Python 
client interfaces directly, while others have provided a host of interfaces for other languages 
(e.g., Java, Octave, Matlab).  Refer to section 3.2 for information on the way this project is 
already leveraging the capabilities of this software package. 

3.4.3.2  The Mobility Open Architecture Simulation and Tools (MOAST).  MOAST framework 
is based on the four-dimensional real-time control system architecture developed at the National 
Institute of Standards and Technology (19).  The framework divides functionality into vertical 
hierarchies called echelons (e.g., primitive echelon, autonomous mobility echelon), where each 
echelon is further divided into functional components (e.g., sensor processing, world modeling).  
The Neutral Messaging Language is used for platform-independent communication between 
modules (which can be distributed across different systems).  Like most of the systems described 
here, MOAST is open source.  

MOAST is one of the most promising candidates for integration into this project if further 
investigation indicates it directly supports or allows development of the needed infrastructure 
and interfaces outlined in section 3.4.2. 

3.4.3.3  Coupled-Layer Architecture for Robotic Autonomy (CLARAty).  The CLARAty project 
is described as a reusable robotic software framework.  While not truly open source, this project 
has many algorithm implementations that may be useful as standalone elements in a new system.  
Integration may be difficult, however, since while the design is very modular, it does not seem to 
support concurrency or distribution explicitly. 
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3.4.3.4  Other Packages.  While investigating previous work, the authors have come across a 
large number of software packages aimed at developing mobile robots, including but not limited 
to YARP, RobotCub, Saphira, OROCOS, MARIE, FlowDesigner, and RobotFlow.  Descriptions 
of these packages are outside the scope of this report; a future report describing the proposed 
agent architectures will provide more in-depth discussion of the state of the art. 

 

4. Conclusion 

The ATRV, even with its upgrades, is not by any means a military robot.  It is a platform that 
provides infrastructure (mobility, power, communication) supporting the research elements of 
the program, i.e., perception processing and autonomous behaviors.  As these behaviors take 
shape and mature, they will be transitioned to robots designed for the field, along with sensors, 
platforms, and computing elements coming from other efforts.  

The upgraded ATRV has computing power and communications at the state-of-today’s practice, 
a suite of sensors with a variety of technologies and complementary strengths, an architecture 
built on the foundations of the best robotics research institutions in academe, and safety 
substantially improved over the baseline.  Lessons have been learned in the upgrade, which 
strengthened the skills and understanding of the researchers involved.  It is to be expected that 
the process, as well as the product, of the upgrade effort will enhance the research efforts of 
ARL’s Unmanned Systems Division for years to come. 
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Appendix.  Sensor Selection for a Fast Indoor Robot 

This appendix describes mobility sensor requirements for a robot capable of speed comparable to 
that of a human in similar circumstances.  The assumed domain is indoors or mild outdoor 
terrain.  The implication of indoor terrain is that there is little room for evasive action (a hallway 
might end in stairs that span the entire width of the hallway), so the most critical response to a 
hazard is to stop.  Sensors must be able to detect an incipient hazard at a range sufficient to allow 
room for a complete stop. 

The speed at which a human moves indoors can be parameterized as follows.  Human walking 
speed is roughly 2 m/s, while human running speed can be roughly bounded by the rate of a 
world-class sprinter, say 10 m/s.  Indoors, it seems unlikely that a human will move at a 
sprinter’s pace, so assume a maximum speed of 5 m/s.   

The deceleration of the robot to a complete stop is governed by brakes (for a vehicle-like robot) 
and coefficient of friction.  For design purposes, the coefficient of friction is assumed to be 0.5, 
limiting deceleration to roughly 5 m/s/s. 

The distance required for the robot to stop can now be calculated.  From 5 m/s, with braking 
acceleration limited by the coefficient of friction, it will take the robot 1 s to decelerate to a 
standstill, during which time it will cover a 2.5-m distance.  The implication for the sensor suite 
is that the robot must be able to reliably detect obstacles at a distance of at least 2.5 m.  A safety 
margin for reaction/response time should also be included.  A human can react in 0.1 s; if a robot 
reacts in the same time (not necessarily a conservative assumption), an additional 0.5 m must be 
added to the sensor detection range for a total of 3 m. 

In general, sensors have an easier time detecting a positive (above the local surface) than a 
negative (below the local surface, e.g., a hole or depression) obstacle.  However, both kinds of 
obstacles must be detected. 
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